ANTI-SHORT CYCLE DELAY

The control includes a five-minute anti-short cycle delay (ASCD) timer to prevent the compressor from short cycling after a power or thermostat signal interruption. The ASCD timer is applied when the control is first powered from the indoor unit thermostat and immediately following the completion of a compressor run cycle. The compressor and the outdoor fan will not operate during the five minutes that the timer is active.

The ASCD timer can be bypassed by connecting the TEST terminals for three seconds while the thermostat is calling for compressor operation (Y1 input signal energized).

LOW VOLTAGE DETECTION

The control monitors the transformer secondary (24 VAC) voltage and provides low voltage protection for the heat pump and its components. In particular, the control prevents contactor chatter during low voltage conditions. If the voltage drops below approximately 19 VAC, the control will continue to energize any relays that are already energized but will not energize any additional relays until the voltage level increases. If the voltage drops below approximately 16 VAC, the control will immediately de-energize the relay outputs and will not energize any relays until the voltage level increases. The control will store and display the appropriate fault codes when low voltage conditions occur.

CRANKCASE HEATER

The control energizes the crankcase heater terminal (CCH) whenever line voltage is applied to the control and the outdoor fan is not on. If the compressor is equipped with a crankcase heater, it will be energized from the CCH terminal of the control.

TEST INPUT

The control includes a TEST input connector that can be used for various testing functions during installation and service. The TEST input connector is shown in Figures 1 & 2. The following table summarizes the behavior of the control when the two TEST pins are connected.

LED DIAGNOSTIC INDICATORS

The control includes two LED’s that display various types of diagnostic information. LED1 is red and LED2 is green. The location of the LED’s is shown in Figures 1 & 2. These LED’s are used to display operational mode, status, and fault information.
OPERATIONAL MODE DETECTION
The control can be used in a variety of applications including heat pumps and air conditioners with modulating compressors. The control uses various inputs to determine the proper mode of operation.

It looks for the presence of a reversing valve connected to the RV and RVG terminals to determine if it should operate as a heat pump or an air conditioner. If the reversing valve is not connected, the control will not operate in the heat pump mode. The control senses the reversing valve loads and determines the operational mode each time power to the control is cycled. The control also senses the reversing valve loads and determines the operational mode each time power to the control is cycled.

The control also senses the connections that are made to the M, M1, and M2 terminals and determines the correct operational mode for the control. This is done each time power to the control is cycled. Therefore, it is important that no loads be attached to the M1 or M2 terminals of the control for single-stage compressors, and no loads be attached to the M1 terminal of the control for scroll two-stage compressor.

TABLE 1: Test Input Functionality

<table>
<thead>
<tr>
<th>Duration of connection (sec.)</th>
<th>Control behavior with no thermostat signals present</th>
<th>Control behavior with thermostat signals present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 2</td>
<td>No response</td>
<td>No response</td>
</tr>
<tr>
<td>2-6</td>
<td>Display operational mode</td>
<td>Bypass ASCD. If Y1 is present and high-pressure switch is closed, contactors will be energized.</td>
</tr>
<tr>
<td></td>
<td>Clear soft lockout</td>
<td>Clear soft lockout</td>
</tr>
<tr>
<td></td>
<td>Clear hard lockout</td>
<td>Clear hard lockout</td>
</tr>
<tr>
<td>More than 6</td>
<td>Display operational mode</td>
<td>Initiate defrost cycle ignoring the liquid line temp.</td>
</tr>
<tr>
<td></td>
<td>with active defrost curve flash code</td>
<td>Energize X/L with active defrost curve flash code</td>
</tr>
<tr>
<td>Connection removed</td>
<td>Resume normal LED display</td>
<td>Terminate defrost as normal or until O signal is energized.</td>
</tr>
<tr>
<td>Connection not removed</td>
<td>Display operational mode</td>
<td>Continue defrost cycle and X/L flash code until TEST connection removed.</td>
</tr>
<tr>
<td></td>
<td>with active defrost curve flash code</td>
<td></td>
</tr>
</tbody>
</table>

IMPORTANT
Do not connect any loads to the M1 or M2 terminals of the control for single-stage compressors, and no loads be attached to the M1 terminal of the control for scroll two-stage compressor. Incorrect system behavior could result.

OPERATIONAL MODE DISPLAY
The control will display its active operational mode using the onboard LED’s when the TEST pins are connected while no thermostat signals are energized. See Table 2. The control will display the operational mode as long as the TEST pins are shorted and no thermostat signals are energized. When the TEST pin short is removed, the control will return to normal LED displays.

TABLE 2: Operational Mode Display

<table>
<thead>
<tr>
<th>Operational Mode</th>
<th>Led1 (Red)</th>
<th>Led2 (Green)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pump</td>
<td>–</td>
<td>On</td>
</tr>
<tr>
<td>Air Conditioner</td>
<td>–</td>
<td>Off</td>
</tr>
<tr>
<td>Single-Stage Compressor</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>Reciprocating Two-Stage Compressor</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>Scroll Two-Stage Compressor</td>
<td>3</td>
<td>–</td>
</tr>
</tbody>
</table>

STATUS MODE DISPLAY
The control also provides status codes using the LED’s. Status codes indicate the state of operation of the unit but do not represent a fault. Table 3 describes the LED displays during status codes. Status codes will not be displayed when a fault code is present. During the following conditions, the control will not energize the X/L output.

TABLE 3: Status Code Display

<table>
<thead>
<tr>
<th>Description</th>
<th>Led1 (Red)</th>
<th>Led2 (Green)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No power to control</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>First-stage compressor operation - not applicable to single stage compressor</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>Second-stage or full capacity compressor operation</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Control normal operation - no call for compressor</td>
<td>Off</td>
<td>2s On</td>
</tr>
<tr>
<td>Control normal operation - call for compressor and ASCD timer (5 min.) is active</td>
<td>Off</td>
<td>Rapid Flash</td>
</tr>
<tr>
<td>No fault codes in memory - Initiated by LAST ERROR push button</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fault code memory cleared - Initiated by LAST ERROR push button</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

FAULT CODE DISPLAY
X/L Output
The X/L terminal of the heat pump control is typically connected to the X/L input of the room thermostat. The thermostat uses this signal to notify the homeowner of a problem with the heat pump using an LED or LCD display. When the control energizes the X/L terminal, the thermostat displays the flash code so the homeowner can see it.

The heat pump control informs the homeowner of the type of condition that is present using flash codes. Table 4 shows the condition categories and the corresponding X/L flash codes.
The control will continue to energize the X/L output for fault codes having an X/L code of 4 flashes even after the thermostat calls are removed. The control does this to notify the installer or homeowner that a significant problem with the wiring or system configuration is present and needs to be corrected. The control will continue to energize the X/L output until the condition that caused the fault condition no longer exists.

TABLE 4: X/L Output Categories

<table>
<thead>
<tr>
<th>Condition Category</th>
<th>X/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Lockout – Reset with interruption of thermostat call following correction of fault condition</td>
<td>2 flashes</td>
</tr>
<tr>
<td>Hard Lockout – Reset by cycling power to system</td>
<td>3 flashes</td>
</tr>
<tr>
<td>Wiring, sensor or control setting related error</td>
<td>4 flashes</td>
</tr>
</tbody>
</table>

LED Display

The control will display any fault code that is currently active using the LED’s. The control will display the fault code, pause two seconds, and display the fault again. The control will continue the fault code display until the condition that caused the fault code no longer exists. If multiple fault codes are present at the same time, the control will display only the most recent fault. The other active errors may be accessed from memory using the LAST ERROR push button.

Operational Fault Codes

Table 5 shows the operational faults that the control can detect. The control displays this type of error by flashing LED1 (Red) only. LED2 (Green) is not energized. These faults typically occur when the heat pump has been operating and a problem occurs.

TABLE 5: Operational Fault Codes

<table>
<thead>
<tr>
<th>Description</th>
<th>LED1 (Red)</th>
<th>LED2 (Green)</th>
<th>X/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Failure that still allows fault code output</td>
<td>On</td>
<td>Off</td>
<td>4 flashes</td>
</tr>
<tr>
<td>High-pressure switch fault (not in lockout yet)</td>
<td>1</td>
<td>Off</td>
<td>OFF</td>
</tr>
<tr>
<td>High-pressure switch lockout (last mode of operation was heat pump)</td>
<td>2</td>
<td>Off</td>
<td>2 (soft) 3 (hard)</td>
</tr>
<tr>
<td>High-pressure switch lockout (last mode of operation was defrost)</td>
<td>3</td>
<td>Off</td>
<td>2 (soft) 3 (hard)</td>
</tr>
<tr>
<td>Low-pressure switch lockout</td>
<td>4</td>
<td>Off</td>
<td>2 (soft) 3 (hard)</td>
</tr>
<tr>
<td>Low Voltage (< 19 VAC) preventing further relay outputs</td>
<td>5</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Low Voltage (< 16 VAC) stopped current relay outputs</td>
<td>6</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Pipe Freeze Protection Timer expiration</td>
<td>7</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

Sensor or Switch Fault Codes

Table 6 shows the faults that the control can detect when a problem is present with a sensor or switch. The control displays this type of error by energizing LED1 (Red) constantly and flashing LED2 (Green). These faults typically occur when the heat pump has been operating and a problem occurs with a sensor or its wiring. These faults could also occur during installation as the heat pump is configured.

TABLE 6: Sensor or Switch Fault Codes

<table>
<thead>
<tr>
<th>Description</th>
<th>LED1 (Red)</th>
<th>LED2 (Green)</th>
<th>X/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Sensor or Switch Faults</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor ambient sensor failure (short)</td>
<td>ON</td>
<td>1</td>
<td>2 (soft)</td>
</tr>
<tr>
<td>Outdoor ambient sensor failure (open)</td>
<td>ON</td>
<td>2</td>
<td>2 (soft)</td>
</tr>
<tr>
<td>Liquid line sensor failure (short)</td>
<td>ON</td>
<td>3</td>
<td>2 (soft)</td>
</tr>
<tr>
<td>Liquid line sensor failure (open)</td>
<td>ON</td>
<td>4</td>
<td>2 (soft)</td>
</tr>
<tr>
<td>Optional Discharge Line Sensor Faults</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High discharge line temperature</td>
<td>ON</td>
<td>5</td>
<td>2 (soft) 3 (hard)</td>
</tr>
<tr>
<td>Low discharge line temperature</td>
<td>ON</td>
<td>6</td>
<td>2 (soft) 3 (hard)</td>
</tr>
<tr>
<td>Discharge line sensor failure (short)</td>
<td>ON</td>
<td>7</td>
<td>2 (soft)</td>
</tr>
<tr>
<td>Optional Bonnet Sensor Faults</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonnet sensor failure (short)</td>
<td>ON</td>
<td>8</td>
<td>2 soft</td>
</tr>
<tr>
<td>Fossil Fuel Mode setting error (FFUEL jumper in OFF position but bonnet sensor present)</td>
<td>ON</td>
<td>9</td>
<td>Off</td>
</tr>
</tbody>
</table>

Wiring Related Fault Codes

Table 7 shows the faults that the control can detect when a problem is present with the system wiring or jumper configurations. The control displays this type of error by flashing LED1 (Red) and energizing LED2 (Green) constantly. These faults typically occur when the heat pump is first installed or when a system component such as the room thermostat or indoor unit is replaced or rewired.

TABLE 7: Wiring Related Fault Codes

<table>
<thead>
<tr>
<th>Description</th>
<th>LED1 (Red)</th>
<th>LED2 (Green)</th>
<th>X/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiring Related Faults</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressor Contactor Miswire</td>
<td>1</td>
<td>ON</td>
<td>3 (hard)</td>
</tr>
<tr>
<td>Y2 present without Y1</td>
<td>2</td>
<td>ON</td>
<td>Off</td>
</tr>
<tr>
<td>O signal received in AC mode</td>
<td>4</td>
<td>ON</td>
<td>Off</td>
</tr>
<tr>
<td>W signal received in AC mode</td>
<td>5</td>
<td>ON</td>
<td>Off</td>
</tr>
<tr>
<td>W and O signal received in AC mode</td>
<td>6</td>
<td>ON</td>
<td>Off</td>
</tr>
<tr>
<td>W and O signal received in HP mode</td>
<td>7</td>
<td>ON</td>
<td>Off</td>
</tr>
<tr>
<td>Defrost Curve Jumper Error (Invalid jumper setting preventing compressor operation)</td>
<td>8</td>
<td>ON</td>
<td>Off</td>
</tr>
</tbody>
</table>

FAULT CODE MEMORY

Displaying Stored Fault Codes

The control will store up to five fault codes in memory. If more than five faults occur, the five most recent fault codes will remain in memory. The stored faults can be displayed by depressing the LAST ERROR push button for one to five seconds while no thermostat inputs to the control are energized. See Figures 1 & 2 for the location of the push button. Since some room thermostats energize the O signal even when not calling for compressor operation, turn the room thermostat to the SYSTEM OFF setting when displaying fault codes. When the LAST ERROR push button is depressed and released, the control will display the stored fault codes beginning with the most recent. The control will display the most recent fault code, pause two seconds, and display the next fault code. The control will display the stored error codes and then
reset the soft lockout condition when any of the following occur following removal of the fault condition.

1. Power is cycled to the R or Y1 inputs of the control. This will cause the soft lockout condition to be reset when the thermostat is satisfied or when the thermostat is set to SYSTEM OFF and back to HEAT or COOL mode.
2. The TEST terminals are shorted for more than two seconds.

When the soft lockout condition is reset, the control stops displaying the fault code, and the control respond to thermostat inputs normally.

Hard Lockout

The control causes a hard lockout condition if four soft lockouts occur within a twelve-hour period caused by any of the following conditions:

1. High-pressure switch fault
2. Low-pressure switch fault
3. High discharge temperature fault
4. Low discharge temperature fault

The four soft lockouts that are counted toward causing a hard lockout can be caused by the same or by different conditions. The control will reset the hard lockout condition when any of the following occur following removal of the fault condition:

1. Power is removed from the R input of the control.
2. The TEST terminals are shorted for more than two seconds.

A hard lockout condition cannot be reset by the thermostat being satisfied or by the thermostat being set to SYSTEM OFF and back to HEAT or COOL mode. Power (24 VAC) to the control must be removed and reapplied.

When the hard lockout condition is reset, the control de-energizes the LED and X/L outputs and respond to thermostat inputs normally.

Wiring or Setting Related Lockouts

The control no longer operates the compressor when the following faults occur. These faults can be reset using the same methods used to reset a soft lockout. However unlike the soft-lockouts, four occurrences of these faults within a twelve-hour period do not cause a hard lockout condition.

1. Presence of Y2 thermostat signal without Y1. Lockout occurs since Y1 powers the compressor output.
2. Shorted discharge sensor input.
3. Shorted bonnet sensor – Applies to heat pump operational mode only.
4. Shorted or open liquid line sensor or outdoor ambient sensor – Applies to heat pump operational mode only.
5. Defrost curve jumper error – Applies to heat pump operational mode only.

Soft Lockout

The control causes a soft lockout during the following conditions. Detailed descriptions of the conditions required for the control to enter the soft lockout mode are contained in other sections of this document.

- High-pressure switch – Two openings within six hours.
- Low-pressure switch – One opening of the switch for more than five seconds except under certain conditions.
- Outdoor ambient sensor failure (heat pump mode only).
- Liquid line sensor failure (heat pump mode only).
- High discharge temperature – Temperature reading exceeds 263°F.
- Low discharge temperature – Temperature reading does not reach 90°F following timer expiration under certain conditions.
- Discharge line sensor failure.
- Bonnet sensor failure (heat pump mode only).
- Y2 present without Y1 (M outputs are powered by Y1 so soft lockout necessarily occurs).
- W and O signal received in HP mode (heat pump mode only).
- Defrost curve jumper error (heat pump mode only).

Clearing Fault Code Memory

Once the stored fault codes have been displayed and recorded, the installer should clear the stored fault codes from the control’s memory. This practice will enable better troubleshooting and diagnosis of system problems. If the stored fault codes are not cleared after the cause of the problem has been resolved, a service technician doing a later service call may not know that the fault codes in the memory were caused by a problem that has already been fixed. The technician may waste time trying to fix a condition that no longer exists. Therefore, it is very important to always clear the fault code memory after the unit is installed and running properly following a service call.

LOCKOUT MODES

Soft Lockout

The control causes a soft lockout during the following conditions. Detailed descriptions of the conditions required for the control to enter the soft lockout mode are contained in other sections of this document.

1. High-pressure switch – Two openings within six hours.
2. Low-pressure switch – One opening of the switch for more than five seconds except under certain conditions.
3. Outdoor ambient sensor failure (heat pump mode only).
4. Liquid line sensor failure (heat pump mode only).
5. High discharge temperature – Temperature reading exceeds 263°F.
6. Low discharge temperature – Temperature reading does not reach 90°F following timer expiration under certain conditions.
7. Discharge line sensor failure.
8. Bonnet sensor failure (heat pump mode only).
9. Y2 present without Y1 (M outputs are powered by Y1 so soft lockout necessarily occurs).
10. W and O signal received in HP mode (heat pump mode only).
11. Defrost curve jumper error (heat pump mode only).

Reset Soft Lockout

To clear the fault code memory, depress the LAST ERROR push button for longer than 5 seconds. The control will flash both LED’s three times to indicate that the memory has been cleared. To confirm that the memory has been cleared, depress the LAST ERROR push button for one to five seconds. The control will flash both LED’s twice to indicate that no faults are stored in memory.

Hard Lockout

The control causes a hard lockout condition if four soft lockouts occur within a twelve-hour period caused by any of the following conditions:

1. High-pressure switch fault
2. Low-pressure switch fault
3. High discharge temperature fault
4. Low discharge temperature fault

The four soft lockouts that are counted toward causing a hard lockout can be caused by the same or by different conditions. The control will reset the hard lockout condition when any of the following occur following removal of the fault condition:

1. Power is removed from the R input of the control.
2. The TEST terminals are shorted for more than two seconds.

A hard lockout condition cannot be reset by the thermostat being satisfied or by the thermostat being set to SYSTEM OFF and back to HEAT or COOL mode. Power (24 VAC) to the control must be removed and reapplied.

When the hard lockout condition is reset, the control de-energizes the LED and X/L outputs and respond to thermostat inputs normally.

Reset Hard Lockout

To clear the fault code memory, depress the LAST ERROR push button for longer than 5 seconds. The control will flash both LED’s three times to indicate that the memory has been cleared. To confirm that the memory has been cleared, depress the LAST ERROR push button for one to five seconds. The control will flash both LED’s twice to indicate that no faults are stored in memory.

IMPORTANT

Always clear the fault code memory after resolving the condition that caused the fault code.

The control causes a soft lockout during the following conditions. Detailed descriptions of the conditions required for the control to enter the soft lockout mode are contained in other sections of this document.

1. High-pressure switch – Two openings within six hours.
2. Low-pressure switch – One opening of the switch for more than five seconds except under certain conditions.
3. Outdoor ambient sensor failure (heat pump mode only).
4. Liquid line sensor failure (heat pump mode only).
5. High discharge temperature – Temperature reading exceeds 263°F.
6. Low discharge temperature – Temperature reading does not reach 90°F following timer expiration under certain conditions.
7. Discharge line sensor failure.
8. Bonnet sensor failure (heat pump mode only).
9. Y2 present without Y1 (M outputs are powered by Y1 so soft lockout necessarily occurs).
10. W and O signal received in HP mode (heat pump mode only).
11. Defrost curve jumper error (heat pump mode only).
Reset Wiring or Setting Related Lockouts
The above faults are classified as soft lockouts because the fault can be reset without power (24VAC) interruption to the control.

If a compressor control wiring error is detected (unlike the above fault conditions), the control causes a hard lockout condition as well as shuts down the compressor.

Once the compressor wiring error is detected and the fault is corrected, power (24 VAC) must be cycled to the control for the control to sense the wiring change and clear the lockout condition. A compressor wiring error fault is classified as a hard lockout because it requires the control power to be cycled to reset the lockout condition.

DEFROST OPERATION
General
The control maintains proper airflow through the outdoor coil during heating operation by melting frost and ice that may form on the coil. Frost may accumulate unevenly in different sections of the coil because of the arrangement of the refrigeration circuit within the coil. The control may initiate a defrost cycle even when the coil is not completely covered with frost. This is normal operation.

The control regulates the defrost operation of the heat pump based on accumulated compressor run time, outdoor coil temperature, and outdoor ambient temperature. The control will cause the unit to operate in the normal heating mode until it determines that a defrost cycle is needed.

All defrost timings are based on accumulated compressor run time.

Operation
The defrost mode is equivalent to the cooling mode except that the outdoor fan motor is de-energized. The control shall do the following to initiate a defrost cycle.

- De-energize the outdoor fan.
- Energize the crankcase heater.
- Energize the reversing valve.
- Energize the auxiliary heat outputs based on the system configuration.
- Energize Y2 OUT terminal if not already energized.
- Begin the maximum defrost cycle length timer.

If the call for heating (Y1) is removed from the control during the defrost cycle, it will terminate the defrost cycle and de-energize the compressor. The control will also stop the defrost cycle length timer but not reset it. When the control receives another call for heating, it will restart the defrost cycle and the timer at the point at which the call for heating was removed. This will happen only if the liquid line temperature conditions allow defrost to occur.

Defrost Cycle Initiation
The control will allow the heat pump to operate in the heating mode until the combination of outdoor ambient and outdoor coil temperatures indicate that a defrost cycle is necessary.

The control has 6 “curves” preprogrammed to define when the defrost cycle is initiated. These curves determine when the defrost cycle will begin, some will trigger sooner than others. Although the pin can be moved in the field, each curve is matched to the appropriate heat pump through testing at the factory. Therefore, each unit comes with the defrost pin already placed in a standard location (pins 1-4). Refer to Table 8 for typically pin settings.

TABLE 8: Defrost Initiate Curves

<table>
<thead>
<tr>
<th>Defrost Curve Selection Jumper Position</th>
<th>PIN 1</th>
<th>PIN 2</th>
<th>PIN 3</th>
<th>PIN 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 SEER Heat Pump Model</td>
<td>2-Ton</td>
<td>4-Ton</td>
<td>3-Ton</td>
<td>1.5-Ton</td>
</tr>
<tr>
<td>15 SEER Heat Pump Model</td>
<td>2-Ton</td>
<td>4-Ton</td>
<td>3-Ton</td>
<td>–</td>
</tr>
<tr>
<td>16 SEER Heat Pump Model</td>
<td>2-Ton</td>
<td>4-Ton</td>
<td>3-Ton</td>
<td>–</td>
</tr>
<tr>
<td>18 SEER Heat Pump Model</td>
<td>2-Ton</td>
<td>4-Ton</td>
<td>3-Ton</td>
<td>–</td>
</tr>
</tbody>
</table>

Pin 5 = Reserved for applications where the equipment is in severe weather and will require more frequent defrost cycles. The maximum length of defrost is also extended to 11 minutes.

Pin 6 = Reserved for installations in very severe weather conditions. The initiate curve is the steepest, the maximum length is extended to 13 minutes and the inhibit time between defrosts is reduced to 30 minutes. It is recommended that the manufacturer be consulted before using this selection.

The control will initiate a defrost cycle when the liquid line temperature is below the initiate point for the measured ambient temperature (See Figure 3) continuously for 4-1/2 minutes. This delay eliminates unnecessary defrost cycles caused by refrigeration surges such as those that occur at the start of a heating cycle.

The control initiates a defrost cycle every 6 hours (accumulated compressor run time) to recirculate refrigerant lubricants. This forced defrost timer resets and restarts following the completion or termination of a defrost cycle.

The control also initiates a defrost cycle when the TEST terminals are shorted. This feature allows an installer or service technician to start a defrost cycle immediately as required. When the TEST terminals are shorted for more than six seconds with a Y1 input energized and the high-pressure switch closed, the anti-short cycle delay (ASCD) is bypassed and the compressor is energized. If an O signal is present, the control can not initiate a defrost cycle. If the defrost cycle is initiated using the TEST terminals, the control bypasses the normal auxiliary heat timings and energizes the W1 OUT and W2 OUT terminals immediately when it begins the defrost cycle.

When the TEST inputs are used to force a defrost cycle, the control ignores the state of the liquid line temperature. The coil does not have to be cold for the heat pump to be forced into a defrost cycle. After the TEST input jumper is removed, the defrost mode is terminated as normal. The defrost cycle length timer is not started until the TEST input is removed. If the TEST terminals remain shorted, the control keeps the unit in defrost mode.

Compressor Delay
This control includes a Compressor Delay feature which causes the compressor to be shut down for 30 seconds before and after each defrost cycle. During this time the reversing valve changes position and the pressure equalsizes.

The compressor delay jumper on the control is shown in Figures 1 & 2. The factory places the jumper in the OFF position. The jumper may be moved to the ON position for any scroll compressors.
Defrost Inhibition
The control will not initiate a defrost cycle if the liquid line temperature is above 40°F unless the defrost cycle is forced using the TEST input.

The control will not initiate a defrost cycle when the outdoor ambient temperature is below ~25°F or above 50°F unless the defrost cycle is forced using the TEST input.

The control will also prevent a defrost cycle from being initiated too soon after the initiation of the previous defrost cycle. When power is applied to the control and after the completion or termination of each defrost cycle, the control will start a 40-minute timer. When this timer expires, the control will allow another defrost cycle when needed. The timer is based on accumulated compressor run time.

Defrost Termination
The control will terminate the defrost cycle immediately after the liquid line temperature reaches 80°F or after eight minutes of defrost operation.

The control will also terminate a defrost cycle that has been forced using the TEST input when the O input is energized. The control will not terminate a normal defrost cycle when it receives an O input.

The control will do the following to terminate a defrost cycle.
- Energize the outdoor fan.
- De-energize the crankcase heater.
- De-energize the reversing valve.
- De-energize the auxiliary heat outputs.
- Control the Y2 OUT terminal based on operating conditions.
- Reset and restart the 40-minute defrost inhibit timer.

![Defrost Operation Curves](image)

COOLING OPERATION (Single-Stage Heat Pump)

During cooling operation, the control will receive thermostat signals at the Y1 and O input terminals. The control will energize the M compressor output terminal. This signal energizes the coil of the compressor contactor causing the compressor to run. The control also closes the outdoor fan relay delivering power to the ODF terminal causing the outdoor fan to operate. The control energizes the RV terminal with 24VAC to switch the reversing valve.

COOLING OPERATION - Two-Stage Ultra Tech Heat Pump

First-Stage Cooling Operation

During first-stage cooling operation, the control will receive thermostat signals at the Y1 and O input terminals. The control will energize the M compressor output terminal. This signal energizes the coil of the compressor contactor causing the compressor to run. The control also closes the outdoor fan relay delivering power to the ODF terminal causing the outdoor fan to operate. The control energizes the RV terminal with 24VAC to switch the reversing valve.

Second-Stage Cooling Operation

During second-stage cooling operation, the control will receive thermostat signals from Y1, Y2 and O inputs. The control will energize both the M and M2 compressor output terminals. The M signal energizes the compressor contactor causing the compressor to run. The M2 signal energizes the isolation relay coil which closes the relay’s normally open contacts. This closure energizes the 24V compressor solenoid causing the compressor to operate. During two-stage cooling operation the control also closes the ODF relay causing the outdoor fan to operate. The control energizes the RV terminal with 24VAC to switch the reversing valve. Additionally, the Y2 OUT terminal is energized with 24VAC. This signal can be used to signal the indoor unit to deliver high air flow.

COOLING OPERATION - Two-Stage Twin Single (TS) Heat Pump

First-Stage Cooling Operation

During first-stage cooling operation, the control will receive thermostat signals at the Y1 and O input terminals. The control will energize the M1 compressor output terminal. This signal energizes the low contactor of the compressor, causing the compressor to run on low. The control also closes the outdoor fan relay delivering power to the ODF terminal causing the outdoor fan to operate. The control energizes the RV terminal with 24VAC to switch the reversing valve.

Second-Stage Cooling Operation

During second-stage cooling operation, the control will receive thermostat signals from Y1, Y2 and O inputs. The control will de-energize the M1 compressor output terminal and begins a 30-second timer. After the 30-second timer expires, the M2 output will be energized. This will de-energize the low contactor and energize the high contactor, causing the compressor to run on high.

During two-stage cooling operation the control also closes the ODF relay causing the outdoor fan to operate. The control energizes the RV terminal with 24VAC to switch the reversing valve. Additionally, the Y2 OUT terminal is energized with 24VAC. This signal can be used to signal the indoor unit to deliver high air flow.

TWO-STAGE COOLING ANTICIPATION MODE

The second-stage anticipation mode applies only to cooling operation. It does not apply to heating operation. The purpose of this mode is to allow the unit to bypass first-stage operation under very hot conditions when the unit will most likely require second-stage operation.

The factory setting for second-stage cooling anticipation mode has the Y2 LOCK jumper in the OFF position.
If the control receives two consecutive (Y1+Y2+O) calls for second-stage cooling, the next call for first-stage (Y1+O) cooling does force second-stage compressor operation to activate without time delay. The control continues to force second-stage cooling operation with thermostat calls for first-stage cooling until one of the following conditions occur:

- A thermostat call for first-stage cooling (Y1+O) that has duration of less than 10 minutes,
- Recycling 24VAC to the control,
- Shorting the TEST input pins.

If the Y2 LOCK jumper is in the OFF position, the control cannot implement the second-stage anticipation mode. This results in second-stage operation only when the room thermostat calls for second-stage cooling (Y1 + Y2 + O) after first-stage operation. If the jumper is removed, the control will behave as if the jumper is in the OFF position.

HEATING OPERATION (Single-Stage Heat Pump)

During normal heating mode, the control receives a thermostat signal at the Y1 input terminal. The control energizes the M compressor output terminal. This signal energizes the coil of the compressor contactor causing the compressor to run. The control also closes the outdoor fan relay delivering power to the ODF terminal causing the outdoor fan to operate. The reversing valve is not energized in heating mode. If the Y2 terminal of the control is energized when the Y1 terminal is not energized, the control displays and stores a fault code and the compressor cannot be energized.

HEATING OPERATION (Two-Stage Ultra Tech Heat Pump)

First-Stage Heating Operation

During first-stage heating operation, the control receives a thermostat signal at the Y1 input terminal. The control energizes the M compressor output terminal. This signal energizes the coil of the compressor contactor causing the compressor to run. The control also closes the outdoor fan relay delivering power to the ODF terminal causing the outdoor fan to operate. The reversing valve does not energize in heating mode.

Second-Stage Heating Operation

During second-stage heating operation, the control receives a thermostat signal at the Y1 and Y2 input terminals. The control de-energizes the M1 compressor output terminal and begins a 30-second timer. After the 30-second timer expires, the M2 output energizes. This de-energizes the low contactor and energizes the high contactor causing the compressor to run on high. The control also closes the ODF relay causing the outdoor fan to operate. The Y2 OUT terminal may or may not energize depending on the HP mode of operation (conventional vs. hot heat pump).

HOT HEAT PUMP MODE (All Models)

There are two independent operations used to create Hot Heat Pump Mode. The first is the reduced airflow feature which is available for single or two-stage Heat Pumps and is controlled by the HOT HEAT PUMP jumper. The second is the Forced Second-Stage feature which is only available for two-stage Heat Pumps. The Forced Second-Stage feature is controlled with the SWITCH POINT jumper. Figure 4 describes how these two operations work together for a two-stage heat pump with a Y1 thermostat call.

Reduced Airflow Feature

The reduced airflow feature operates only if the HOT HEAT PUMP jumper on the control is placed in the ON position. The Y2 OUT signal must also be connected to the indoor unit for this feature to function properly.

The Reduced Airflow Feature creates the Hot Heat Pump by controlling the indoor airflow level during heating operation only. The cooling operation is not affected. The control changes the indoor airflow level using the Y2 OUT signal terminal. The Y2 OUT terminal connects to the high speed cooling input of a variable speed indoor unit. When the heat pump control energizes the Y2 OUT terminal, the indoor blower runs at high speed delivering high airflow.

When the control de-energizes the Y2 OUT terminal, the indoor airflow level reduces as the blower runs at a lower speed delivering lower airflow and higher leaving air temperature.

The higher airflow is necessary to keep the operating pressures low when the outdoor ambient temperature is 50°F or greater. If the HOT HP jumper is in the ON position and the control receives a call for heating (Y1), the control energizes the compressor and measures the outdoor ambient temperature. If the outdoor ambient temperature is equal to or greater than 50°F, the control board energizes the Y2 OUT and keeps it energized until the thermostat is satisfied (Y1 signal removed).

If the outdoor ambient temperature is less than 50°F, the control starts a ten-minute timer and keeps Y2 OUT de-energized. During the ten-minute timer cycle, the compressor is operating and the indoor unit is operating with reduced airflow. If the HOT HP jumper is in the ON position and if the outdoor ambient temperature is less than 50°F, the indoor airflow at the beginning of a heating cycle operates on low.

When the ten-minute timer expires, the control measures the liquid line temperature and determines whether to energize Y2 OUT and increase the indoor airflow or to keep Y2 OUT de-energized and maintain reduced indoor airflow. The control compares the measured liquid line temperature to a pre-programmed indoor airflow curve. It continues to keep Y2 OUT de-energized until the liquid line temperature exceeds the curve for the given outdoor ambient temperature continually for 30 seconds. If the liquid line temperature drops below the curve, the control will reset the 30-second timer and restart it when the liquid line temperature again exceeds the curve. When the liquid line temperature exceeds the indoor airflow control curve continually for 30 seconds, the control energizes Y2 OUT (i.e. causing high indoor airflow) until the thermostat demand is satisfied.
When the control receives a call for heating (Y1), it checks the outdoor ambient temperature. If the outdoor ambient temperature is 52°F, the control will energize Y2 OUT immediately causing high indoor airflow and keep it energized until the Y1 signal is removed. If the outdoor ambient temperature is 48°F, the control will maintain Y2 OUT in a de-energized state and begin a ten-minute timer. The indoor unit will be running at low airflow because of the Y1 signal being delivered to the Y1 input of the indoor unit.

When the ten-minute timer expires, the control will compare the liquid line temperature to the measured outdoor ambient temperature for verification of the indoor airflow control curve. If the point is within region A (See Figure 4), the control shall maintain Y2 OUT in the de-energized state until the liquid line temperature rises so that region B is entered. While in region A, the indoor unit will continue to run at low airflow. When the liquid line temperature point enters region B, the control will start a 30-second timer. When the timer expires, the control will immediately energize Y2 OUT. If the liquid line temperature drops back into region A before the timer expires, the control will reset the timer and restart it when the liquid line temperature again enters region B. When the liquid line temperature is in region B continually for thirty seconds, the Y2 OUT signal will be delivered to the indoor unit and cause high airflow.

During defrost operation, the control will ignore the HOT HP jumper setting and energize the Y2 OUT signal to create high indoor airflow. Additionally, if at any point the conditions require a defrost cycle, the control will override the reduced indoor airflow feature and function based on the defrost requirements and conditions.

Forced Second-Stage Feature (Two-Stage Heat Pump Only)
The Forced Second-Stage feature is not affected by the HOT HEAT PUMP jumper. The control determines the behavior of the forced second-stage feature based on the SWITCH POINT jumper input. Based on the Switch Point setting and the liquid line temperature, the control will lock the compressor to second-stage operation.

This forced second-stage feature insures that the compressor will always be in second-stage during a defrost cycle. If the compressor were allowed to be in first-stage during defrost, the outdoor coil would not defrost as quickly as it would in second-stage. The maximum defrost cycle length timer could expire before the defrost cycle is complete.

The forced second-stage feature also prevents first-stage heating operation at low temperature and avoids cold indoor leaving air.

Switch Point Settings (Two-Stage Heat Pump Only)
The Switch Point setting affects only the Forced Second-Stage feature of the Hot Heat Pump.

The control allows for switch point settings to be 35°, 40° or 45° F.

The factory places the switch point jumper in the 35°F position. If the jumper is removed, the control will behave as if the jumper is in the 35°F position.

The minimum switch point temperature option of 35°F insures that the compressor will always be in second-stage operation during defrost. If a temperature option below 35°F was allowed, the heat pump might require a defrost cycle (based on liquid line temperature below initiate curve) before the control forced the compressor into second-stage operation based on the switch point setting.

Forced Second-Stage Feature Operation (Two-Stage Heat Pump Only)
The control will force second-stage compressor operation when the liquid line temperature is below the switch point even if the thermostat is calling only for first-stage. The liquid line temperature must be below the switch point continuously for 30 seconds. If the liquid line temperature exceeds the switch point before 30 seconds has expired, the control will reset the timer and restart the timer when the liquid line falls below the switch point again.

The control shall only implement this behavior during a call for first-stage heating (Y1).

The control will no longer force two-stage compressor when all of the following conditions are true continuously for 30 seconds. If any of the conditions are no longer true before the 30-second timer expires, the control will reset the timer and restart the timer when all of the conditions are again true. That is, if the liquid line temperature exceeds the switch point temperature then falls below the switch point temperature before the 30-second timer expires, the control shall reset the timer when the control falls below the switch point. The control shall restart the 30-second timer when the liquid line temperature exceeds the switch point temperature again.

1. The liquid line temperature exceeds the switch point temperature.
2. The outdoor ambient temperature exceeds the values corresponding to each switch point setting as shown in Table 9.

TABLE 9: Switch Point Exit Temperatures

<table>
<thead>
<tr>
<th>Switch Point Setting</th>
<th>OD Ambient Exit Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>45</td>
<td>55</td>
</tr>
</tbody>
</table>

3. The unit is not in defrost mode. If the other exit conditions are met while the unit is in defrost mode, the control will complete the defrost cycle and then exit the forced second-stage feature.
EMERGENCY HEAT

When the control receives a W signal without a Y signal (emergency heat), the control will energize the W1 OUT terminal immediately. Normally the control shall energize W2 OUT terminal 15 minutes after the W1 OUT output terminal is energized. The exception to the normal operation is when the control shall energize both W1 OUT and W2 OUT immediately when an emergency heat signal (W) is received under either of the following conditions:

1. When the control is in air handler mode and the outdoor ambient temperature is below the balance point temperature setting.
2. When the control is in air handler mode and a compressor lockout condition exists.

LOW TEMPERATURE CUTOUT (LTCO) AND BALANCE POINT (BP)

The control includes a LTCO feature that prevents compressor operation below a specified temperature during heat pump heating operation only. The LTCO setting does not apply to compressor operation during cooling.

The control also includes a balance point feature that prevents the operation of auxiliary heat above a specified temperature.

LTCO and BP Settings

The LTCO and BP jumpers on the control are shown in Figures 1 & 2. Both jumpers are placed on the same connector header. The control will consider the jumper pin at the lowest temperature setting to be the LTCO and the jumper pin at the highest temperature setting to be the BP. The use of the same connector header forces the BP and the LTCO to always be separated by at least 10 degrees F.

The temperatures shown on the side of the connector labeled LTCO are the LTCO temperature options. The values shown are in degrees F. The control allows the LTCO to be set to any of the following temperatures: -10, 0, 10, 15, 20, 25, 30, 35 degrees F or ON. Placing the jumper in the ON position will allow the control to operate the compressor at any temperature during heating operation.

The factory places the LTCO jumper in the ON position. The jumper must be changed in the field to implement the LTCO feature. If the jumper is removed, the control will behave as if the jumper is in the ON position.

The temperatures shown on the side of the connector labeled BP are the BP temperature options. The values are shown in degrees F. The control allows the balance point to be set to any of the following temperatures: 0, 10, 15, 20, 25, 30, 35, 40, or 45 degrees F.

The factory places the BP jumper in the 35°F position. The jumper may be changed in the field as desired. If the jumper is removed, the control will behave as if the jumper is in the 35 position.

If only one jumper is in place, the control will set the balance point based on the jumper position and will set the LTCO to ON. If only one jumper is in place and it is below the valid BP settings (in the –10 or ON position), the control will set the BP to the default value for no jumper in place (35°F) and set the LTCO based on the jumper position (-10 or ON).

LTCO Operation

The control will not operate the compressor in heating mode when the outdoor ambient temperature is below the selected LTCO. The outdoor ambient temperature must rise 2 °F above the LTCO setting before the control will function as if the temperature is above the LTCO setting.

BP Operation

If the measured outdoor ambient temperature is greater than the balance point setting, the control will not energize the auxiliary heat outputs. However, the control shall ignore the balance point setting and energize auxiliary heat under some conditions as described in the auxiliary heat sections of this document.

The outdoor ambient temperature must fall 2°F below the BP setting before the control will function as if the temperature is below the BP setting.
FOSSIL FUEL JUMPER (FFUEL)

Setting
The control includes a FFUEL jumper to specify whether the control is installed with a fossil fuel furnace or an air handler electric furnace. This jumper is shown in Figures 1 & 2. The factory places the FFUEL jumper in the OFF position which is the correct position for an air handler installation. The jumper must be changed to the ON position in the field if the heat pump is installed with a fossil fuel furnace. If the jumper is removed, the control will behave as if the jumper is in the OFF position.

Operation
The operation operates the auxiliary heat outputs, W1 OUT and W2 OUT, based on the position of the FFUEL jumper. If the FFUEL jumper is in the ON position, the control will function in fossil fuel mode. If the jumper is in the OFF position, the control will function in air handler mode. The FFUEL jumper has no effect on cooling operation.

AUXILIARY HEAT - AIR HANDLER MODE

When connecting low voltage system wiring, DO NOT connect terminal W to terminal W1 OUT and/or terminal W2 OUT. It can result in causing auxiliary or backup heat to lock on.

The heat pump control energizes the auxiliary electric heat in air handler mode using the W1 OUT and W2 OUT signals. The control receives the room thermostat call for auxiliary heat at the W input terminal.

TABLE 10: Air Handler Auxiliary Heat Functionality

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>Y1</th>
<th>Y1 + Y2</th>
<th>Y1 + W</th>
<th>Y1 + Y2 + W</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Above BP</td>
<td>Heat Pump Operation (Stage 1)</td>
<td>Heat Pump Operation (Stage 1)</td>
<td>Heat Pump Operation (Stage 1) + W1 OUT after 15 minutes</td>
<td>Heat Pump Operation (Stage 2) + W1 OUT after 15 minutes</td>
<td>W1 OUT (immediate) + W2 OUT (after 15 minutes)</td>
</tr>
<tr>
<td>Ambient below BP and above LTCO</td>
<td>Heat Pump Operation (Stage 1)</td>
<td>Heat Pump Operation (Stage 2)</td>
<td>Heat Pump Operation (Stage 1) + W1 OUT (immediate) + W2 OUT (after 15 minutes)</td>
<td>Heat Pump Operation (Stage 2) + W1 OUT (immediate) + W2 OUT (after 15 minutes)</td>
<td>W1 OUT + W2 OUT</td>
</tr>
<tr>
<td>Ambient below LTCO</td>
<td>W1 OUT</td>
<td>W1 OUT + W2 OUT</td>
</tr>
</tbody>
</table>

Auxiliary Heat Defrost Operation – Air Handler Mode

The control will energize W1 OUT 30 seconds prior to and during defrost operation. If W1 OUT has been energized for 15 minutes, W2 OUT will be energized as well. The W1 OUT and W2 OUT will remain energized (depending on the 15 minute timer) 180 seconds after the defrost cycle has been terminated. The control will begin normal heat pump heating mode operation upon termination of the defrost cycle.

Pipe Freeze Protection Timer – Air Handler Mode Operation

The control starts a four hour timer when a call for compressor operation and auxiliary heat (Y1 + W or Y1 + Y2 + W for 2-stage models) is received. If the call for compressor operation and auxiliary heat is still present after the timer expires, the control will energize W1 OUT and W2 OUT in addition to the compressor output regardless of the balance point setting. If the call for auxiliary heat (W) is removed but the call for compressor operation (Y1 or Y1 + Y2 for 2-stage models) remains, the control will de-energize auxiliary heat (W1 OUT and W2 OUT) and reset and restart the timer. If the timer expires again, the same functionality will be repeated indefinitely.

The purpose of this feature is to prevent the pipes in a home from freezing if the balance point is set too low and the heat pump cannot heat the home using compressor operation only. This is a benefit if a home is not occupied and a compressor problem occurs. The control shall also store and display an operational fault flash code when the pipe freeze timer has expired.

Standard Operation (Single-Stage Heat Pump)

If the outdoor ambient temperature is less than the balance point setting and above LTCO and a W input is received with a Y1 input, the control will energize the M compressor contactor output based on the Y1 input and will energize the W1 OUT immediately when the W input is received. When the W input is received, the control will start a fifteen-minute timer. If the call for Y1 + W is still present after the fifteen-minute timer expires, the control will then energize W2 OUT along with W1 OUT. If the W input is removed but the Y1 signal remains, the control will de-energize W1 OUT and W2 OUT (if energized) and reset and restart the timer. If the W input is received again without a loss of the Y1, the same functionality will be repeated.

If the outdoor ambient temperature is below the LTCO setting, the control will de-energize the compressor and energize W1 OUT immediately when a Y1 input is received.

Table 10 describes the auxiliary heat operation for air handler mode.

Standard Operation (Two-Stage Heat Pump)

If the outdoor ambient temperature is less than the balance point setting and greater than LTCO and a W input is received with a Y1 or Y1 + Y2 input, the control will energize the M compressor contactor output based on the Y1 input and will energize the W1 OUT immediately when the W input is received. When the W input is received, the control will start a fifteen-minute timer. If the call for Y1 + W or Y1 + Y2 + W is still present after the fifteen-minute timer expires, the control will then energize W2 OUT along with W1 OUT. If the W input is removed but the Y1 or Y1 + Y2 signal remains, the control will de-energize W1 OUT and W2 OUT (if energized) and reset and restart the timer. If the W input is received again without a loss of the Y1 or Y1 + Y2, the same functionality will be repeated.

If the outdoor ambient temperature is below the LTCO setting, the control board de-energizes the compressor, energizes W1 OUT immediately when a Y1 input is received, and energizes a W2 OUT immediately when the Y2 input is received.
Standard Operation

If the outdoor ambient temperature is above the LTCO setting the control will allow normal heat pump operation. If the outdoor ambient temperature is below the balance point setting but above the LTCO setting and receives a call for (W) in addition to a call for compressor heating (Y1 or Y1 + Y2 input), the control will allow normal heat pump operation. If the outdoor ambient temperature is above the LTCO setting and receives a call for (W) the control allows the heat pump and the furnace to operate simultaneously provided the leaving air temperature is less than 90 degrees Fahrenheit.

TABLE 11: Fossil Fuel Furnace Auxiliary Heat Functionality

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>WITH BONNET SENSOR</th>
<th>WITHOUT BONNET SENSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y1 + Y2</td>
<td>Y1 + W</td>
</tr>
<tr>
<td>Ambient Above BP</td>
<td>Heat Pump Operation (Stage 1)</td>
<td>Heat Pump Operation (Stage 1)</td>
</tr>
<tr>
<td></td>
<td>(Stage 2)</td>
<td>(then + W1 OUT after pipe freeze</td>
</tr>
<tr>
<td></td>
<td></td>
<td>protection timer expires + W2 OUT after</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 minutes)</td>
</tr>
<tr>
<td>Ambient below BP and above</td>
<td>Heat Pump Operation (Stage 1)</td>
<td>Heat Pump Operation (Stage 1)</td>
</tr>
<tr>
<td>LTCO</td>
<td>(Stage 2)</td>
<td>(if BS is less than 90°F) + W1 OUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(immediate) + W2 OUT after 15 minutes)</td>
</tr>
<tr>
<td>Ambient below LTCO</td>
<td>W1 OUT</td>
<td>W1 OUT + W2 OUT</td>
</tr>
<tr>
<td></td>
<td>W1 OUT + W2 OUT</td>
<td></td>
</tr>
</tbody>
</table>

This helps prevent “cold blow” while the unit switches from heat pump to auxiliary heat mode. The control also cycles the fossil fuel furnace differently surrounding a defrost cycle depending on whether or not a bonnet sensor is installed. The bonnet sensor is installed in the indoor unit and is mounted so that it measures the leaving indoor air temperature after the air exits the furnace. The bonnet sensor is connected to the heat pump control using the BS and BSG terminals. Refer to the bonnet sensor accessory kit for complete installation instructions.

Since the bonnet sensor is an optional accessory, the control cannot detect a bonnet sensor that fails in the open position. If the control senses that the bonnet sensor thermistor is open, it will assume that a bonnet sensor thermistor is not connected and will function without implementing the optional bonnet sensor features. If the control senses that the bonnet sensor thermistor is shorted, it will cause a lockout condition and store and display the appropriate error code.

The bonnet sensor only applies to fossil fuel furnace applications and should not be installed with air handlers. If the bonnet sensor is present, the control will operate in fossil fuel mode so that the indoor unit and heat pump are not operated simultaneously. If the control is in air handler mode and detects that a bonnet sensor input is present, it will control W1 OUT and W2 OUT as required by the fossil fuel mode.

Auxiliary Heat Defrost Operation – Fossil Fuel Mode with Bonnet Sensor

With a bonnet sensor present the control will energize W1 OUT 30 seconds before and during defrost. W2 OUT will only be energized if W1 OUT has been energized for more than 15 minutes. If a call for auxiliary heating (W2) is not present after the defrost cycle ends, the control will continue to energize W1 OUT and W2 OUT after the defrost cycle has been terminated until the bonnet sensor reaches 109°F.

The control will begin normal heat pump heating mode operation upon termination of the defrost cycle.
Auxiliary Heat Defrost Operation – Fossil Fuel Mode without Bonnet Sensor

If the control is in fossil fuel mode and senses that no bonnet sensor is present, it will energize W1 OUT 30 seconds before defrost. W2 OUT will only be energized if W1 OUT has been energized for more than 15 minutes. If a call for heating (Y1) is still present after the defrost cycle has terminated, the control will de-energize W1 OUT and W2 OUT immediately and return to normal heat pump mode operation.

In this mode the control will energize the fossil fuel furnace during defrost only and not provide any comfort enhancements during the transition. The heat pump and furnace will not operate at the same time if the bonnet sensor is not in place.

Pipe Freeze Protection Timer – Fossil Fuel Mode Operation

The control starts a four hour timer when a call for compressor operation and auxiliary heat (Y1 + W) is received.

If the outdoor temperature is above the balance point, the control will energize the compressor instead of the auxiliary heat outputs. If the call for compressor operation and auxiliary heat is still present after the timer expires, the control will energize W1 OUT and W2 OUT and de-energize the compressor regardless of the balance point setting. The control will keep the W1 OUT and W2 OUT signals energized until the Y1 signal is removed. That is, the control will lock into auxiliary heat furnace operation until the room thermostat is satisfied.

The purpose of this feature is to prevent the pipes in a home from freezing if the balance point is set too low and the heat pump cannot heat the home using compressor operation only. This is a benefit if a home is not occupied and a compressor problem occurs.

The control will also store and display an operational fault flash code when the pipe freeze timer has expired.

Y2 LOCK

The control includes a Y2 LOCK feature which allows the unit to anticipate the need for second-stage cooling during high-load conditions. Refer to the “Second-Stage Cooling Anticipation Mode” section of this document for detailed information.

The Y2 Lock jumper on the control is shown in figures 1 & 2. The factory places the Y2 Lock jumper in the OFF position. If the jumper is removed, the control will behave as if the jumper is in the OFF position.

SWITCH POINT

The control includes a switch point feature which determines the liquid temperatures at which the compressor will be forced to operate in second-stage. Refer to the “Switch Point Operation” section of this document for detailed information.

Switch Point Setting

The switch point jumper on the control is shown in Figure 1 & 2. The control allows for switch point settings to be 35, 40 or 45. The valves shown are in degrees F.

The factory places the switch point jumper in the 35°F position. If the jumper is removed, the control will behave as if the jumper is in the 35°F position. The switch point feature is used exclusively for the HP heating operation mode. Cooling operation is not effected by switch point setting.

HIGH-PRESSURE SWITCH FAULT

The heat pump is equipped with a high-pressure switch that is connected to the control at the HPS terminals. If the high-pressure switch opens for more than 40 milliseconds, the control will de-energize the compressor and store and display the appropriate fault code. If the pressure switch closes and a thermostat call for compressor operation is present, the control will apply the five-minute anti-short cycle delay timer and start the compressor when the timer expires.

When the compressor is started following a high-pressure switch fault, the control will start a six-hour timer based on accumulated compressor run time. If the control senses another opening of the high-pressure switch before the timer expires, it will cause a soft lockout condition. The second opening of the high-pressure switch must be greater than 160 milliseconds for the lockout to occur. If the second opening is between 40 and 160 milliseconds, the control will de-energize the compressor but not cause a soft lockout condition. If the control does not sense a second high-pressure switch opening before the six-hour timer expires, the timer and counter will be reset.

LOW-PRESSURE SWITCH

The heat pump is equipped with a low-pressure switch which is connected to the control at the LPS terminals. If the low-pressure switch opens for more than five seconds, the control will cause a soft lockout condition and display the appropriate fault codes. However, the control will ignore the low pressure switch input and not cause a soft lockout condition if it opens during the following conditions.

- Defrost operation
- First two minutes of compressor operation
- Two minutes following the completion of a defrost cycle
- TEST input shorted with Y1 input energized

DISCHARGE LINE TEMPERATURE SENSOR (OPTIONAL)

The heat pump may be equipped with an optional discharge line temperature sensor. If a discharge sensor is present, the control will provide the following features.

High Discharge Line Temperature

If the control senses a discharge line temperature reading of 263°F for 30 seconds continually, it will cause a soft lockout condition. If the discharge line temperature drops below 263°F during the 30-second timer, the control will reset the 30-second timer and restart the timer if the discharge line temperature again exceeds 263°F.

Low Discharge Line Temperature

The control will begin a sixty-minute timer when either of the following conditions are met.

- The discharge line temperature has not reached 90°F after eight minutes of accumulated compressor run time.
- The discharge temperature has not reached 90°F after fifteen minutes of accumulated compressor run time following the exit of a defrost cycle.

If the discharge line temperature has not reached 90°F after the sixty-minute timer has expired, the control will cause a soft lockout condition. The control will reset the sixty-minute timer upon expiration and when the compressor starts. The timer is reset when the compressor starts and is only restarted if one of the two conditions shown above are met.

The low discharge temperature fault indicates that the outdoor coil is too cold during heating operation. The lockout is intended to prevent refrigerant flooding back to the compressor.

IMPORTANT

The discharge sensor must be well insulated and installed properly to prevent nuisance lockouts from occurring.